PDF User Manual

  1. Home
  2. Manuals
  3. ST STV9302A Manual

ST STV9302A Manual

Made by: ST
Type: Manual
Category: Extender
Pages: 15
Size: 0.32 MB

 

Download PDF User Manual



Full Text Searchable PDF User Manual



background image

September 2003

1/15

®

STV9302A

Vertical Deflection Booster

for 2-A

PP

TV/Monitor Applications with 70-V Flyback Generator

Main Features

Power Amplifier

Flyback Generator

Output Current up to 2 App

Thermal Protection

Stand-by Control

Description

The STV9302A is a vertical deflection booster 
designed for TV and monitor applications.

This device, supplied with up to 35 V, provides up to 
2 App output current to drive the vertical deflection 
yoke.

The internal flyback generator delivers flyback 
voltages up to 70 V.

in double-supply applications, a stand-by state will 
be reached by stopping the (+) supply alone.

 

 

HEPTAWATT

(Plastic Package)

ORDER CODE: STV9302A

7
6
5
4
3
2
1

Tab connected 

Input (Non Inverting)
Output Stage Supply
Output
Ground Or Negative Supply
Flyback Generator
Supply Voltage
Input (Inverting)

to pin 4

1

Thermal

Protection

6

4

3

5

STV9302A

 

+

-

Power

Amplifier

7

2

Flyback

Generator

Inverting

Non-Inverting

Input

Input

Ground or Negative Supply

Output

Flyback

Generator

Output Stage

Supply

Voltage

Supply

 


background image

Absolute Maximum Ratings

STV9302A

2/15

 

1

Absolute Maximum Ratings 

Note:1. Usually the flyback voltage is slightly more than 2 x V

S

. This must be taken into consideration when 

setting

 

V

S.

2. Versus pin 4

3. V3 is higher than V

S

 during the first half of the flyback pulse.

4. Such repetitive output peak currents are usually observed just before and after the flyback pulse.

5. This non-repetitive output peak current can be observed, for example, during the Switch-On/Switch-

Off phases. This peak current is acceptable providing the SOA is respected (

Figure 8

 and 

Figure 9

).

6. All pins have a reverse diode towards pin 4, these diodes should never be forward-biased.

7. Input voltages must not exceed the lower value of either V

S

 + 2 or 40 volts.

2

Thermal Data

Symbol

Parameter

Value

Unit

Voltage

V

S

Supply Voltage (pin 2) - 

Note 1

 and 

Note 2

40

V

V

5

, V

6

Flyback Peak Voltage - 

Note 2

70

V

V

3

Voltage at Pin 3 - 

Note 2

Note 3

 and 

Note 6

-0.4 to (V

S

 + 3)

V

V

1

, V

7

Amplifier Input Voltage - 

Note 2

Note 6

 and 

Note 7

- 0.4 to (V

S

 + 2) or +40

V

Current

I

(1)

Output Peak Current at f = 50 to 200 Hz, t 

 10µs - 

Note 4

±5

A

I

(2)

Output Peak Current non-repetitive - 

Note 5

±2

A

I

Sink

Sink Current, t<1ms - 

Note 3

1.5

A

I

3

 Source

Source Current, t 

<

 1ms

1.5

A

I

3

Flyback pulse current at f=50 to 200 Hz, t

10

µ

s - 

Note 4

±5

A

ESD Susceptibility

ESD1

Human body model (100 pF discharged through 1.5 k

)

2

kV

ESD2

EIAJ Standard (200 pF discharged through 0

)

300

V

Temperature

T

s

Storage Temperature

-40 to 150

°C

T

j

Junction Temperature

+150

°C

Symbol

Parameter

Value

Unit

R

thJC

Junction-to-Case Thermal Resistance 

3

°C/W

T

T

Temperature for Thermal Shutdown

150

°C

T

J

Recommended Max. Junction Temperature

120

°C

 


background image

 3/15

STV9302A

Electrical Characteristics

3

Electrical Characteristics

(V

S

 = 32 V, T

AMB 

= 25°C, unless otherwise specified)

8. In normal applications, the peak flyback voltage is slightly greater than 2 x (V

S

 - V

4

). Therefore, (V

S

 

- V

4

) = 35 V is not allowed without special circuitry.

9. Refer to 

Figure 4

, Stand-by condition.

Symbol

Parameter

Test Conditions

Min.

Typ.

Max.

Unit

Fig.

Supply

V

S

Operating Supply Voltage Range (V

2

-V

4

)

Note 8

10

35

V

I

2

Pin 2 Quiescent Current

I

= 0, I

= 0

5

20

mA

1

I

6

Pin 6 Quiescent Current

I

= 0, I

= 0, V

=35v

8

19

50

mA

1

Input

I

1

Input Bias Current

V

= 1 V, V

= 2.2 V

- 0.6

-1.5

µ

A

1

I

7

Input Bias Current

V

= 2.2 V, V

= 1 V

- 0.6

-1.5

µ

A

V

IR

Operating Input Voltage Range

0

V

S

 - 2

V

V

I0

Offset Voltage

2

mV

V

I0

/dt

Offset Drift versus Temperature

10

µ

V/°C

Output

I

0

Operating Peak Output Current

±1

A

V

5L

Output Saturation Voltage to pin 4

I

5

 = 1 A 

1

1.7

V

3

V

5H

Output Saturation Voltage to pin 6

I

5

 = -1 A 

1.8

2.3

V

2

Stand-by

V

5STBY

Output Voltage in Stand-by

V

1

 = V

7

 = V

S

 = 0 

See 

Note 9

V

S

 - 2

V

Miscellaneous

G

Voltage Gain

80

dB

V

D5-6

Diode Forward Voltage Between pins 5-6

I

5

 = 1 A 

1.4

2

V

V

D3-2

Diode Forward Voltage between pins 3-2

I

3

 = 1 A 

1.3

2

V

V

3SL

Saturation Voltage on pin 3

I

3

 = 20 mA 

0.4

1

V

3

V

3SH

Saturation Voltage to pin 2 (2nd part of flyback)

I

3

 = -1 A 

2.1

V

 


background image

Electrical Characteristics

STV9302A

4/15

 

Figure 1: Measurement of I

1

, I

2

 and I

6

Figure 2: Measurement of V

5H

Figure 3: Measurement of V

3L

 and V

5L

1V

(a)

39k

5

1

(b)

I1

(a): I2 and I6 measurement

(b): I1 measurement

S

+Vs

2

6

I2

I6

4

7

2.2V

STV9302A

5.6k

- I5

5

1V

7

2.2V

1

4

+Vs

2

6

V

5H

STV9302A

+Vs

I3 or I5

3

5

V

5L

V

3L

(a)

(b)

(a): V

5L

 measurement

(b): V

3L

 measurement

STV9302A

1V

7

4

2

6

2.2V

1

 


background image

 5/15

STV9302A

Application Hints

4

Application Hints

The yoke can be coupled either in AC or DC.

4.1

DC-coupled Application

When DC coupled (see 

Figure 4

), the display vertical position can be adjusted with input bias. On 

the other hand, 2 supply sources (V

S

 and -V

EE

) are required.

A Stand-by state will be reached by switching OFF the positive supply alone. In this state, where 
both inputs are the same voltage as pin 2 or higher, the output will sink negligible current from the 
deviation coil. 

4.1.1

Application Hints

For calculations, treat the IC as an op-amp, where the feedback loop maintains V

1

 = V

7

.

Figure 4: DC-coupled Application

R3

+Vs

R2

R1

Rd(*)

Yoke

Ly

Vertical Position

Adjustment

-V

EE

Vref

 (*) recommended:

Ly

50

µ

s

-------------

Rd

Ly

20

µ

s

-------------

<

<

0.1µF

0.1µF

C

F

 (47 to 100µF)

Power

Amplifier

Flyback

Generator

Thermal

Safety

470µF

470µF

Output

Current

Output

Voltage

I

p

000000000000000000

00000000000000000

000000000000000000 000000000000000000

000000000000000000

000000000000000000

00000000000000000

00000000000000000

7

3

2

5

6

1

4

V

M

V

m

+

-

0

.22

µF

1.5

 


background image

Application Hints

STV9302A

6/15

 

4.1.1.1 Centering 

Display will be centered (null mean current in yoke) when voltage on pin 7 is (R

1

 is negligible):

4.1.1.2 Peak Current

Example: for V

m

  = 2 V,  V

= 5 V and I

P

  = 1 A

Choose R

1

 in the1

 range, for instance R

1

=1

From equation of peak current: 

Then choose R

2

 or R

3

. For instance, if R

2

 = 10 k

, then R

= 15 k

Finally, the bias voltage on pin 7 should be: 

4.1.2

Ripple Rejection

When both ramp signal and bias are provided by the same driver IC, you can gain natural rejection 
of any ripple caused by a voltage drop in the ground (see 

Figure 5

), if you manage to apply the 

same fraction of ripple voltage to both booster inputs. For that purpose, arrange an intermediate 
point in the bias resistor bridge, such that (R

8

 / R

7

) = (R

3

 / R

2

), and connect the bias filtering 

capacitor between the intermediate point and the local driver ground. Of course, R

7

 should be 

connected to the booster reference point, which is the ground side of R

1

.

Figure 5: Ripple Rejection

V

7

V

M

V

m

+

2

------------------------

R

2

R

2

R

3

+

----------------------

ÿ

þ

×

=

I

P

V

M

V

m

(

)

2

-----------------------------

R

2

R

1

xR

3

-------------------

×

=

R

2

R

3

-------

2

I

P

R

1

×

×

V

M

V

m

-----------------------------

2
3

---

=

=

V

7

V

M

V

m

+

2

------------------------

1

1

R

3

R

2

-------

+

-----------------

×

7
2

---

1

2.5

--------

×

1.4V

=

=

=

R

3

R

2

R

1

Rd

Yoke

Ly

Power

Amplifier

Flyback

Generator

Thermal

Safety

0000000000000000

0000000000000000

7

3

2

5

6

1

4

+

-

0000000000000000

0000000000000000

R

7

R

8

R

9

000000

000000

000000

Reference
Voltage

Ramp
Signal

Driver
Ground

Source of Ripple

 


background image

 7/15

STV9302A

Application Hints

4.2

AC-Coupled Applications

In AC-coupled applications (See 

Figure 6

), only one supply (V

S

) is needed. The vertical position of 

the scanning cannot be adjusted with input bias (for that purpose, usually some current is injected 
or sunk with a resistor in the low side of the yoke).

4.2.1

Application Hints

Gain is defined as in the previous case:

Choose R

1

 then either R

2

 or R

3

. For good output centering, V

7

 must fulfill the following equation:

or

Figure 6: AC-coupled Application

R

3

+Vs

R

2

R

1

Rd(*)

Yoke

Ly

 (*) 

recommended:

Ly

50

µ

s

-------------

Rd

Ly

20

µ

s

-------------

<

<

0.1µF

C

(47 to 100µF)

Power

Amplifier

Flyback

Generator

Thermal

Safety

470µF

Output

Current

Output

Voltage

I

p

000000000000000000

000000000000000000

000000000000000000

000000000000000000

000000000000000000

000000000000000000

7

3

2

5

6

1

4

V

M

V

m

+

-

000000000000000000

00000000000000000

00000000000000000

000000000000000000

000000000000000000

C

s

R

4

000000000000000000

C

L

R

5

0.22

µF

1.5

I

p

V

M

V

m

2

------------------------

R

2

R

1

R

3

×

----------------------

×

=

V

S

2

--------

V

7

R

4

R

5

+

----------------------

V

7

V

M

V

m

+

2

------------------------

R

3

--------------------------------------

V

7

R

2

-------

+

=

V

7

1

R

3

-------

ÿ

1

R

2

-------

+

×

1

R

4

R

5

+

----------------------

þ

V

S

2 R

4

R

5

+

(

)

------------------------------

V

M

V

m

+

2

R

3

×

------------------------

+

ÿ

þ

=

+

 


background image

Application Hints

STV9302A

8/15

 

C

S

 performs an integration of the parabolic signal on C

L

, therefore the amount of S correction is set 

by the combination of C

L

 and C

s

.

4.3

Application with Differential-output Drivers 

Certain driver ICs provide the ramp signal in differential form, as two current sources i

+

 and i

 with 

opposite variations. 

Let us set some definitions:

i

cm

 is the common-mode current:

at peak of signal, i

+

= i

cm

  + i

p

 and i

= i

cm

  - i

p

, therefore the peak differential signal is i

p

- (-

i

p

) = 2 i

p

, and the peak-peak differential signal, 4i

p

.

The application is described in 

Figure 7

 with DC yoke coupling. The calculations still rely on the fact 

that V

1

 remains equal to V

7

.

Figure 7: Using a Differential-output Driver

+Vs

R

2

R

1

Rd(*)

Yoke

Ly

-V

EE

0.

2

2µF

 

 (*) 

recommended:

Ly

50

µ

s

--------------

Rd

Ly

20

µ

s

--------------

<

<

0.1µF

0.1µF

C

(47 to 100µF)

Power

Amplifier

Flyback

Generator

Thermal

Safety

+

-

470µF

470µF

Output

Current

Output

Voltage

I

p

000000000000000000

000000000000000000

000000000000000000

000000000000000000

00000000000000000

00000000000000000

00000000000000000

00000000000000000

00000000000000000

00000000000000000

7

3

2

5

6

1

4

R

7

00000000000000000

00000000000000000

+

-

Differential output

driver IC

i

p

i

cm

-i

p

i

cm

1.5

i

cm

1
2

--- i

+

i

-

+

(

)

=

 


background image

 9/15

STV9302A

Application Hints

4.3.1

Centring

When idle, both driver outputs provide i

cm

 and the yoke current should be null (R

1

 is negligible), 

hence: 

4.3.2

Peak Current

Scanning current should be I

P

 when positive and negative driver outputs provide respectively

i

cm

- i

and i

cm

+ i

p

, therefore

and since R

7

 = R

2

Choose R

1

 in the 1

 range, the value of R

2

 = R

7

 follows. Remember that i is one-quarter of driver 

peak-peak differential signal! Also check that the voltages on the driver outputs remain inside 
allowed range.

Example: for i

cm

 = 0.4mA, i = 0.2mA (corresponding to 0.8mA of peak-peak differential 

current), I

p

= 1A

Choose R

1

 = 0.75

, it follows R

2

 = R

7

 = 1.875k

.

4.3.3

Ripple Rejection

Make sure to connect R

7

 directly to the ground side of R

1

.

4.3.4

Secondary Breakdown Diagrams 

The diagram has been arbitrarily limited to max VS (35 V) and max I0 (2 A).

Figure 8: Output Transistor Safe Operating Area (SOA) for Secondary Breakdown

i

cm

R

7

i

cm

R

2

   therefore   R

7

R

2

=

=

i

cm

i

(

)

R

7

I

p

R

1

i

cm

i

+

(

)

R

2

+

=

I

p
i

-----

2R

7

R

1

-----------

=

100

µ

s

10ms

100ms

0.01

0.1

1

10

10

60

100

Volts

Ic

(A)

@ Tcase=25°C

35

 


background image

Mounting Instructions

STV9302A

10/15

 

5

Mounting Instructions

The power dissipated in the circuit is removed by adding an external heatsink. With the 
HEPTAWATT

™ 

package, the heatsink is simply attached with a screw or a compression spring 

(clip).

A layer of silicon grease inserted between heatsink and package optimizes thermal contact. In DC-
coupled applications we recommend to use a silicone tape between the device tab and the heatsink 
to electrically isolate the tab. 

Figure 9: Secondary Breakdown Temperature Derating Curve (ISB = Secondary Breakdown Current)

Figure 10: Mounting Examples

 


background image

 11/15

STV9302A

Pin Configuration

6

Pin Configuration  

Figure 11: Pins 1 and 7

Figure 12: Pin 3 & Pins 5 and 6

1

7

2

3

2

6

5

4

2

 


background image

Package Mechanical Data

STV9302A

12/15

 

7

Package Mechanical Data  

Figure 13: 7-pin Heptawatt Package

Table 1: Heptawatt Package

Dim.

mm

inches

Min.

Typ.

Max.

Min.

Typ.

Max.

A

4.8

0.189

C

1.37

0.054

D

2.40

2.80

0.094

0.110

D1

1.20

1.35

0.047

0.053

E

0.35

0.55

0.014

0.022

E1

0.70

0.97

0.028

0.038

F

0.60

0.80

0.024

0.031

G

2.34

2.54

2.74

0.095

0.100

0.105

G1

4.88

5.08

5.28

0.193

0.200

0.205

G2

7.42

7.62

7.82

0.295

0.300

0.307

H2

10.40

0.409

H3

10.05

10.40

0.396

0.409

L

16.70

16.90

17.10

0.657

0.668

0.673

A

L

L1

C

D1

L5

L2

L3

D

E

M1

M

H3

Dia.

L7

L11

L10

L6

H2

F

G

G1

G2

E1

F

E

L9

V4

L4

H2

 


background image

 13/15

STV9302A

Package Mechanical Data

L1

14.92

0.587

L2

21.24

21.54

21.84

0.386

0.848

0.860

L3

22.27

22.52

22.77

0.877

0.891

0.896

L4

1.29

0.051

L5

2.60

2.80

3.00

0.102

0.110

0.118

L6

15.10

15.50

15.80

0.594

0.610

0.622

L7

6.00

6.35

6.60

0.0236

0.250

0.260

L9

0.20

0.008

L10

2.10

2.70

0.082

0.106

L11

4.30

4.80

0.169

0.190

M

2.55

2.80

3.05

0.100

0.110

0.120

M1

4.83

5.08

5.33

0.190

0.200

0.210

V4

40 (Typ.)

Dia.

3.65

3.85

0.144

0.152

Table 1: Heptawatt Package (Continued)

Dim.

mm

inches

Min.

Typ.

Max.

Min.

Typ.

Max.

 


background image

Revision History

STV9302A

14/15

 

8

Revision History

Table 2: Summary of Modifications

Version

Date

Description

2.0

January 2002

First Issue.

2.1

November 2002

Addition of Stand-by Control information, 

Section 8: Revision History

2.2

April 2003

Correction to 

Section 4.1.1.2: Peak Current

. Creation of new title, 

Section 

4.3.4: Secondary Breakdown Diagrams

.

 


background image

 15/15

STV9302A

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the 

consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its 

use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications 

mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously 

supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without 

express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com