PDF User Manual

  1. Home
  2. Manuals
  3. Gree Versati II+ Manual

Gree Versati II+ Manual

Made by: Gree
Type: Manual
Category: Heat Pump
Pages: 13
Size: 6.68 MB

 

Download PDF User Manual



Full Text Searchable PDF User Manual



background image

Change for life

GREE ELECTRIC APPLIANCES, INC.OF ZHUHAI

Air-to-water Heat Pump Monobloc Versati 

Design and Selection

 


background image

CONTENTS

1 Installation Example ������������������������������������������������������������������������������� 1
2 Model Selection �������������������������������������������������������������������������������������� 3

2.1 Speculations of Power Supply ................................................................................... 3
2.2 Operation Conditions ................................................................................................. 3
2.3 Flowchart of Model Selection ..................................................................................... 3
2.4 Design Principle ......................................................................................................... 3

3 Selection of the Underfloor Coils ���������������������������������������������������������� 4

3.1 Calculation of Unit Load for Floor Heating ................................................................. 4
3.2 Selection of Tube Spacing of the Underfloor Coils ..................................................... 4

4 Quantity and Location of the Water Traps and Collectors ������������������ 5

4.1 Design Requirements on Loop Quantity for Circulation Water ................................... 5
4.2 Requirements on Installation of the Water Trap (Collector) ....................................... 6

5 Section of FCU ���������������������������������������������������������������������������������������� 7

5.1 FCU Type Selection ................................................................................................... 7
5.2 Matching of Capacity .................................................................................................. 7

6 Selection of the Water Tank ������������������������������������������������������������������� 8

6.1 Specifications of the Water Tank ................................................................................ 8
6.2 Volume Selection of the Water Tank .......................................................................... 8

7 Examples for Model Selection ��������������������������������������������������������������� 8

7.1 General Introduction to the Example Project  ............................................................ 8
7.2 Heat Load Calculation ................................................................................................ 9
7.3 Model Selection ........................................................................................................ 10

 


background image

1

Design & Selection

1 Installation Example

CASE 1: Connecting Heat Emitters for Heating and Cooling(Under floor loop,Fan Coil Unit,and 

Radiator)

Notes

The two-way valve is very important to prevent dew condensation on the floor and Radiator while cooling 

mode;

Type of thermostat and specification should be complied with installation of this manual;

The Bypass valve must be installed to secure enough water flow rate, and should be installed at the 

collector.

CASE 2: Connecting Sanitary Water Tank

Notes

 In this case, three-way valve should be installed and should be complied with installation of this manual;

Sanitary water tank should be equipped with internal electric heater to secure enough heat energy in the 

very cold days;

 


background image

2

Design & Selection

CASE 3 : Connecting Solar thermal system 

Two-way valve is very important to prevent dew condensation on the floor and Radiator while cooling mode.

CASE 4 : Connecting Swimming pool system 

B

M

T

 

3-way valve 1

3-way valve 2

City water

Radiator

FCU 1F

CU 2

Under Floor Coil

Booster heater

Sanitary water tank

Hot water

Notes:

Two-way valve is very important to prevent dew condensation on the floor and Radiator while cooling 

mode.

 3-Way valve 1 is controlled by user,while the pool pump is actived, 3-Way valve 1 switches to

pool loop;while the pool pump is shuted down,3-Way valve 1 switches to under floor/FCU loop.

 3-Way valve 2 is automatic controlled by monobloc unit,while running water heating mode,3-Way valve 

2 switches to water tank loop;while running cooling/heating mode,3-Way valve 2 switches to under floor/FCU 
loop.

 


background image

3

Design & Selection

2 Model Selection

2.1 Speculations of Power Supply

Two choices of Power Supply

380~415V-3PH-50Hz

220~240V-1PH-50Hz

GRS-CQ10Pd/NaC-K

GRS-CQ8.0Pd/NaC-K

GRS-CQ12Pd/NaC-M

GRS-CQ14Pd/NaC-M

2.2 Operation Conditions

Capacities and power inputs are based on the following conditions (floor heating /cooling )
a.  Cooling conditions                                       

b.  Heating conditions 

Indoor Water Temp 23°C/18°C;                                               

Indoor Water Temp 30°C/35°C; 

Outdoor Air Temp 35°C DB/24°C WB                                     

Outdoor Air Temp 7°C DB/6°C WB

Capacities and power inputs are based on the following conditions (FCU or radiator)
a.  Cooling conditions   

b.  Heating conditions

Indoor Water Temp 12°C/7°C; 

Indoor Water Temp 40°C/45°C; 

Outdoor Air Temp 35°C DB/24°C WB                                              

Outdoor Air Temp 7°C DB/6°C WB

2.3 Flowchart of Model Selection

Calculate the load

Preliminary selection 

of unit

Finish unit selection

Actual capacity 

 

Load

Calculate the load

YES

NO

2.4 Design Principle

 

Cooling: capacity of the unit ≥ cooling load of the air conditioning

 

Heating: capacity of the unit ≥ max{ heating load, floor heating load, water heating load}

 

Water Tank: it should be selected based on the sanitary outfit or quantity of users. Each unit can 
accommodate only one water tank. 

 


background image

4

Design & Selection

3 Selection of the Underfloor Coils

3.1 Calculation of Unit Load for Floor Heating

Empirical Values of Floor Heating Load Per Square Meter

House W/m

2

Dining Room

100~120

Mater Room

100~110

Guest Room

110~130

Study Room

90~110

Villa W/m

2

Dining Room

110~140

Mater Room

100~120

Guest Room

100~130

Study Room

100~120

Notes

Villas whose load is generally larger than the houses should take the value between the middle and the 

maximum empirical values listed above.

The top lever whose load is generally larger than the middle or bottom layer should take the maximum 

empirical value.

The guest room whose load is generally much large should take the value between the intermediate and 

the maximum empirical values listed above.

For those whose external walls or glass areas are large, it is recommended to take the load calculation.

The heating load for the bathroom is generally 500W/room.

3.2 Selection of Tube Spacing of the Underfloor Coils

Tube spacing of the underfloor coils which will directly affect heat dissipation of the floor depends on the 

tube material, indoor design temperature, supply water temperature and floor material.

Heat Dissipation of Commonly Used Coils

(Tube material: PE-X, Indoor temperature:18°C, Average water temperature:45°C)

Floor Material

Thermal Resistance

m

2

·K/W

Tube Spacing

mm

Heat Dissipation

W/m

2

Tube Spacing

mm

Heat Dissipation

W/m

2

Stone

0.02

200

147.0

150

159.8

Wood

0.075

200

111.2

150

117.8

The dissipated heat of the floor coil is larger than the load for the floor heating system; however the 

deviation cannot be larger than 10%.

3.3 Selection of Loop Quantity of Coils for Each Room
3.3.1Type of Underfloor Coils

When selecting underfloor coils, we should consider both their comfortability and heating capacity. The most 

commonly used coils are as shown below. 

Square-shaped Coil (Recommended)

  

U-shaped Coil

Length of coils are calculated as below:
Square-shaped coil: =L*W/tube spacing=area/tube spacing
U-shaped coil: =L-1+L*W/tube spacing=L-1+area/tube spacing
The reason why the square-shaped coils are recommended is because they can keep even temperature 

 


background image

5

Design & Selection

distribution. Special demand can be met by adjusting the tube spacing.

Distance from the room to the water trap/collector should be estimated according to the actual conditions of 

the project and generally should not exceed 30m.

3�3�2 Selection of Loop Quantity for Each Room

 

Length of a single loop should not exceed 100m. If so, it should be divided into multiple loops. 

 

Area of a single loop=tube length×tube spacing=100m×150mm=15m

2

B

M

Underfloor Coil

Selected 

Unit

Length of underfloor coils is recommended to be within 100m and length of each branch should be kept the 

same to the most extent. 

4 Quantity and Location of the Water Traps and Collectors

The water trap (collector) is a kind of device for distributing water for the water supply and return tubes.

4.1 Design Requirements on Loop Quantity for Circulation Water

1) One water trap (collector) is allowed for at most eight loops. When quantity of loops exceeds 12, then two 

traps (collectors) should be used, or it will cause uneven water distribution.

2) The maximum flow rate of the water trap (collector) should be less than 0.8m/s.
3) The inlet and outlet of each loop should be connected to the water trap (collector) and the inner diameter 

of the water trap (collector) should be or larger than that of the main water supply/return tube.

   Calculation of loop quantity for circulation water can be done as per the forma below

N=A/A1

          N——loop quantity
          A—— total floor heating area (unit: m

2

)

          A1—— floor heating area per single loop (unit: m

2

)

Example for how to calculating the floor heating area per single loop: when the tube length is 120m, and 

tube spacing is 200mm, then the floor heating area per single loop is 120×0.2=24m2.

4) One trap (collector) cannot be used for different floors, or it would cause uneven water distribution.

B

1F

2F

M

M

M

Wrong Design

 


background image

6

Design & Selection

B

1F

2F

M

M

Correct Design

B

M

5) Distance between the unit and the water trap (collector) should be within 15m. If the distance exceeds 

20m, then it is required to calculate the hydraulic power.

4.2 Requirements on Installation of the Water Trap (Collector)

1) The water trap (collector) should be installed on the wall or inside the special box. For housing 

constructions, it is generally installed in the kitchen.

2) The valve for the water trap (collector) should be installed horizontally and keep a distance of at least 

300mm to the ground.

3) The water supply valve should be installed upstream of the water trap (collector) and the return valve 

should be installed downstream of the water trap (collector)

4) A filter is required upstream of the water trap (collector).

 


background image

7

Design & Selection

5 Section of FCU

5.1 FCU Type Selection

The air-water fan coil unit is optional for Versati units

5.2 Matching of Capacity

Load of the FCU is better to be between 70%~120% of the Versati unit.

Notes:

When load of the FCU is too small, the unit would start/stop frequently, which is adverse for oil return.

When load of the FCU is too large, the unit would always run under high frequency, which is unhelpful for 

energy conservation.

Type

Air Volume

(m

3

/h)

Cooling 

Capacity

(kW)

Heating 

Capacity

(kW)

Static 

Pressure

(Pa)

Appearance

Wall mounted 

type

166~1020

2.1~5.4

3.15~8.5

——

Concealed 

ceiling type

213~2380

1.85~12.8

3.1~21

12, 30

Floor ceiling 

type

213~2040

1.9~10.8

2.8~16.2

——

Cassette type

480~1700

4.5~9

6.8~13.7

——

 


background image

8

Design & Selection

6 Selection of the Water Tank

6.1 Specifications of the Water Tank

SXVD200LCJ/A-K 

220~240V-1Ph-50Hz
A single coil with the electric heater is integrated, used for floor heating system 

SXVD300LCJ/A-K 
SXVD200LCJ2/A-K 

220~240V-1Ph-50Hz
Dual coils with the electric heater are integrated, used for floor heating system and the solar system

SXVD300LCJ2/A-K 
SXVD200LCJ/A-M 

380~415V-3Ph-50Hz
A single coil with the electric heater is integrated, used for floor heating system

SXVD300LCJ/A-M 

SXVD200LCJ2/A-M 

380~415V-3Ph-50Hz
Dual coils with the electric heater are integrated, used for floor heating system and the solar system

6�2 Volume Selection of the Water Tank

6.2.1 Selection Based on Water Consumption Per Capita

Building Type

Unit

Daily Water Consumption (L) 

Water Temperature (°C)

House

Per person, Per day 

40~80

60

Villa

Per person, Per day

70~110

60

6�2�2 Selection Based on Sanitary Utensils 

Utensil Type

Daily Water 

Consumption (L) 

Water Temperature (°C)

Bathtub, Sprinkler system (with shower)

150

40

Bathtub, Sprinkler system (without shower)

125

40

Shower

70~100

37~40

Wash Basin

3

30

6� 2�3 Selection of the Water Tank

Selection of the water tank should consider the flow rate of the shower head, duration of use per person 

and daily water consumption.

Volume  of the Water Tank=

t(design temperatuere)-t(entering cold water temperatuere)

t(water tank temperatuere set point)-t(entering cold wa ter temperature)

•consumptio

n

t (design temperature): generally it is 60°C ;
t (entering cold water temperature): it differs for different regions.
t ( water tank temperature set point): it is the target heating temperature of the water tank
α: correction factor

Empirical Values for Volume Correction of the Water Tank

                        Duration of Use 

                           (min/Person)

Flow Rate of the Shower Head 
                    (L/min)

10

15

20

25

30

40

4

0.48

0.71

0.94

1.18

1.42

1.89

6

0.71

1.06

1.42

1.77

2.12

2.83

8

0.95

1.42

1.89

2.36

2.83

3.77

10

1.18

1.77

2.36

2.95

3.54

4.72

15

1.76

2.65

3.54

4.42

5.31

7.08

Empirical values are worked out under conditions of 80L consumption (per day per person), 8L/min flow rate 

of the shower head, and 10 minutes use duration per person.

7 Examples for Model Selection

7�1 General Introduction to the Example Project 

For a two-floor house, there is a master room and a both room for each floor and both of 

them require floor heating. Other rooms use the heat pump for heating in winter. The master 

room covers 28m

2

 and the both room covers 12m

2

.

 


background image

9

Design & Selection

7.2 Heat Load Calculation

7.2.1 Load Calculation of a Single Floor

Room

Area

Heat Index (W/m

2

)

Heat Load (W)

Master Room

28

82

2296

Bathroom

12

72

900

Total Load

2296+900=3196w

7.2.2 Arrangement Design of the Underfloor System for A Single Floor

Assumed conditions: the floor is cement or ceramics, the normal external diameter of the heating pipe is 

20mm, thickness of the stuffer is 50mm, thickness of PS foam insulation is 20mm, supply water temperature is 
45°C , return water temperature is 35°C , indoor design temperature is 20°C .

Average Temperature of the Heating Pipe=(45+35)/2=40°C 

7.2.3 Arrangement Design of the Underfloor System for the Bath Room

Heat load of the bath room is 900W, heat dissipation per unit area is 75W/m2, tube spacing of the heat pipe 

is 30mm, and heat loss is 25.4 W/m2, then the total heat loss is: 

25.4×12=304.8W

Based on the heat load listed in the table above, the heating load for the bathroom is: 

900+304.8=1204.8W

According to the formula Q=CρGΔT, the flow rate of the heating pipe for the bathroom is:

G=

1.2048kJ/1/3600 h

Q

=0.104m

3

/h

=

If the outer diameter of the heating pipe is 20mm and thickness is 2mm, then the minimum flow for the 

heating pipe is:

G=

=3.14/4*

(

20-2*2

)

2

*10

-6

*0.25*3600 =(0.18m

3

)/h

It can be see that the arranged piping system for the bathroom does not meet the technical requirement and 

must be used in common for the master room.

7.2.4 Arrangement Design of the Underfloor System for the Master and Both Rooms

 According to the calculation results, the total heat load for the master and bath rooms is 3196W, heat 

dissipation per unit area is 82W/m2, tube spacing of the heating pipe is 300mm, and heat loss 25.4 W/m

2

 is, 

then the total heat loss is:

3196+1016=4212W

According to the formula Q= CρGΔT, the flow rate is

G=

4.212kJ/(1/3600h)

Q

=0.3622m

3

/

0.18m

3

/h

=

4.186kJ/(kg·

)*1000kg/m

3

 *(45-35)

Loop quantity is 0.3622/0.18=2.012 and the round-off number is 2.

7.2.5 Check

 

A. Check for the flow rate

0.3622/2

=0.2503m/s

3.14*0.008

2

*3600

Floor rate of each loop is within 0.25~0.5m/s and the system can run stably.

 

B. Check for the tube length 

When the average tube spacing is 30mm, the required length of the heating pipe per square meter is 3.5m, 

length of total coils is 3.5×40=140 and length for each loop is 140/2=70.

It can be seen that the length for each loop is less than 120m and there it meets the design requirement.

 

C. Check for the ground average temperature

tp=tn+9.82×(qx/100) 0.969=20+9.82×(82/100) 0.969=28°C

Upper Limits and Average Floor Temperature

Average Floor Temperature

Area

Average Temperature

Maximum Temperature

Long-term Dwelling Area

24~26

28

Short-term Dwelling Area

28~30

32

Nobody Area

35~40

42

 


background image

10

Design & Selection

7�3 Model Selection

Heat demand for a single layer: 3196W
Heat loss for a single layer: 1016W
Total heat load for a single layer: 4212W
Total heat load of the building: 8424W
Capacity of the main unit should be larger than 8424W, so we can select:

GRS-CQ10Pd/NaC-K

 


background image